Quantum Dimensions and Their Non-archimedean Degenerations

نویسنده

  • JASPER V. STOKMAN
چکیده

We derive explicit dimension formulas for irreducible MF-spherical KF-representations where KF is the maximal compact subgroup of the general linear group GLd(F) over a local field F and MF is a closed subgroup of KF such that KF/MF realizes the Grassmannian of n-dimensional F-subspaces of F. We explore the fact that (KF,MF) is a Gelfand pair whose associated zonal spherical functions identify with various degenerations of the multivariable little q-Jacobi polynomials. As a result, we are led to consider generalized dimensions defined in terms of evaluations and quadratic norms of multivariable little q-Jacobi polynomials, which interpolate between the various classical dimensions. The generalized dimensions themselves are shown to have representation theoretic interpretations as the quantum dimensions of irreducible spherical quantum representations associated to quantum complex Grassmannians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

System of AQC functional equations in non-Archimedean normed spaces

‎In 1897‎, ‎Hensel introduced a normed space which does‎ ‎not have the Archimedean property‎. ‎During the last three decades‎ ‎theory of non--Archimedean spaces has gained the interest of‎ ‎physicists for their research in particular in problems coming‎ ‎from quantum physics‎, ‎p--adic strings and superstrings‎. ‎In this paper‎, ‎we prove‎ ‎the generalized Hyers--Ulam--Rassias stability for a‎ ...

متن کامل

Sl2-orbits and Degenerations of Mixed Hodge Structure

We prove an analog of Schmid’s SL2-orbit theorem for a class of variations of mixed Hodge structure which includes logarithmic deformations, degenerations of 1-motives and archimedean heights. In particular, as consequence this theorem, we obtain a simple formula for the asymptotic behavior of the archimedean height of a flat family of algebraic cycles which depends only on the weight filtratio...

متن کامل

The Geometry of p-Adic Fractal Strings: A Comparative Survey

We give a brief overview of the theory of complex dimensions of real (archimedean) fractal strings via an illustrative example, the ordinary Cantor string, and a detailed survey of the theory of p-adic (nonarchimedean) fractal strings and their complex dimensions. Moreover, we present an explicit volume formula for the tubular neighborhood of a p-adic fractal string Lp, expressed in terms of th...

متن کامل

Stochastic processes and antiderivational equations on non-Archimedean manifolds

Stochastic processes on manifolds over non-Archimedean fields and with transition measures having values in the field C of complex numbers are studied. Stochastic antideriva-tional equations (with the non-Archimedean time parameter) on manifolds are investigated. 1. Introduction. Stochastic processes and stochastic differential equations on real Banach spaces and manifolds on them were intensiv...

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008